
© Copyright 2010 Hewlett-Packard Development Company, L.P     1 

OpenVMS Technical 
Journal V14 

SimH Supports Availability Manager Development Environment at HP 

Barry Kierstein, Software Engineer 
 

SimH Supports Availability Manager Development Environment at HP ..................................................1 

Introduction................................................................................................................................3 

The Problem: Legacy VAX Test Hardware ........................................................................................3 

The Virtual Option.......................................................................................................................3 

Virtual VAX Advantages ...............................................................................................................4 

Evaluating SimH..........................................................................................................................4 

Handling Multiple Network Adapters..............................................................................................4 

SimH Implementation ...................................................................................................................5 

Putting SimH to Work...................................................................................................................5 

Conclusion.................................................................................................................................6 

Configuration and Implementation..................................................................................................6 

About the Author....................................................................................................................... 10 



© Copyright 2010 Hewlett-Packard Development Company, L.P  2 

 
 
 
 

 



© Copyright 2010 Hewlett-Packard Development Company, L.P  3 

Introduction 

During my tenure at Hewlett-Packard, I served as the project leader for Availability Manager on 
OpenVMS.  As such, I was responsible for its development and testing on the VAX, Alpha, and 
Integrity platforms.  This article describes the deployment of the open source SimH VAX emulator to 
replace aged VAX hardware while maintaining the Availability Manager test environment.  This 
article was sponsored by Migration Specialties. 

The article is in two main sections.  The first section tells the story of why SimH VAX was selected and 
how it was utilized to solve legacy hardware and testing issues.  The second section, Configuration 
and Implementation, provides details on how the SimH VAX environment was created. 

The Problem: Legacy VAX Test Hardware 

Over time, the primary development and test cluster for Availability Manager evolved to consist of a 
number of VAX, Alpha, and Integrity systems.  These machines were good solid machines, but some 
were getting to be pretty old, especially the VAX systems.  By 2007, I was concerned that the VAX 
systems would eventually fail.  Since I had a limited hardware budget, this would leave me in the 
difficult position of supporting VAX systems in the field without any VAX hardware in the lab.  Much 
of the Availability Manager development work involved device drivers, with the associated potential 
of crashing systems during development and testing.  Hence, using machines outside the Availability 
Manager development cluster was not an option. 

The Virtual Option 

In the summer of 2007, VAX hardware reliability concerns prompted me to research replacement 
options.  I needed four VAX systems to replace the VAX workstations that I possessed at that time – 
one for each version of OpenVMS supported by Availability Manager (OpenVMS V6.3, V7.1, V7.2, 
and V7.3).  I was looking for something that would fit my budget and work on the available 
Windows PC systems. 

Virtual machines were becoming common place and the idea of a virtual VAX was intriguing. Virtual 
machines are on ongoing interest for me.  I had studied the Virtual Machine (VM/CMS) operating 
system by IBM in college, seen commercial VAX emulators demonstrated at various forums, attended 
VMware sessions at the HP Technology Forum, and used the Microsoft Virtual PC software. 



© Copyright 2010 Hewlett-Packard Development Company, L.P  4 

Virtual VAX Advantages 

A virtual VAX offered the following advantages for Availability Manager development and testing: 

• Easy to backup and restore a virtual machine 

o Allowed for quicker recovery from development bugs 

o Allowed a quick system restore to a known state for repeated tests 

• Easy system reconfiguration of memory, disk drives, and network adapters 

o Allowed quick move of a disk drive from one system to another 

o Allowed development and test system configurations that I could not previously afford 
using physical hardware, such as 512MB of memory, many disk drives, and multiple 
network adapters 

Evaluating SimH  

After investigating alternatives, the free, open source SimH VAX emulator looked promising.  The 
SimH website, http://simh.trailing-edge.com/, provided the then current installation kit, version 3.7-0.  I 
downloaded the software and started reading the documentation.  I also subscribed to the SimH 
mailing list (the address is under “Help With SimH” on the SimH homepage).  Between the 
documentation and some postings from the SimH website, I was able to get my first virtual VAX up 
and running. 

Working with this simulation, I learned a number of things: 

• The Availability Manager successfully installed and ran in the virtual environment. 

• The ability to backup and restore virtual machines was as easy as expected, opening up 
possibilities of repeated testing of a system starting from a known state. 

• The ability to reconfigure the virtual machines by changing the amount of memory, changing 
the number of disk devices, etc. was as easy as expected, enhancing configuration testing 
capabilities. 

• The ability to transfer a disk from one virtual machine to another was as easy as expected, 
which improved operationally efficiency and flexibility. 

• Each virtual machine needed its own network adapter and MAC address. 

Handling Multiple Network Adapters 

The need for separate network adapters was based on a subtle, but important behavior.  This involves 
how applications sharing an Ethernet-based network adapter are able to view traffic from each other.  
The adapter, by default, does not send the outbound traffic from one application to the other 
applications on a shared adapter.  In my case, if two virtual machines shared the same adapter, 
outbound traffic from one of them was not seen by the other.  So, if the two virtual machines were 
part of the same cluster, they wouldn’t see the cluster traffic from each other. As a result, the two 
virtual machines cannot form a cluster connection between them. 

This network adapter behavior is well known and can be addressed in a couple of ways.  One 
solution is using one network adapter per virtual machine.  This is the simplest setup and the one with 
better performance.  The other is to install additional software that allows applications sharing a 
network adapter to see the outbound traffic from each other.  This solution allows one to use fewer 
physical network adapters. 

In my case, I wanted to keep the software setup as simple as possible so I obtained enough network 
adapters to have one per virtual machine. 

http://simh.trailing-edge.com/


© Copyright 2010 Hewlett-Packard Development Company, L.P  5 

SimH Implementation 

Evaluation of the initial SimH virtual VAX established that the emulator would support the OpenVMS 
VAX environment required for Availability Manager development and testing.  I had a single 
dual-CPU PC available to host four instances of the VAX emulator.  The limited host hardware 
impacted performance of each virtual VAX, but since I didn’t need great performance, this was 
acceptable.  I used the following steps to generate the initial virtual VAX configurations: 

• Installed the additional network adapters into the host system. 

• Built the configuration files for each virtual VAX system. 

• Assigned a unique MAC addresses to each system. 

• Created virtual disk drives for each VAX system.  The virtual drives appear as large files on 
the host system and are referred to as container files.  Virtual drives can be created using the 
SimH ATTACH command. 

• Test booted each virtual VAX to the boot prompt and verified the configuration via console 
commands. 

The next step was to migrate the drive contents from the four legacy VAX systems to the virtual VAXen.  
I accomplished this by installing OpenVMS on one virtual VAX.  I then configured this virtual machine 
to use all of the virtual machine disk drives, booted the system into the cluster, and used $ 
BACKUP/IMAGE to move the drive contents from the physical VAX systems to the virtual VAX disk 
drives.  Using image backups on live disks does entail the risk of not picking up all the contents of 
open files.  However, the open files on my systems were mostly log files so this was not an issue. 

Once I had migrated the drive contents, I set the four virtual VAX to their final configuration and 
booted them.  They joined the Availability Manager development cluster and acted like their VAX 
hardware counterparts! 

After finishing the initial conversion of the four VAX systems, I created four more virtual systems.  
These had the same configuration as the first four systems, but with a fresh install of OpenVMS.  These 
virtual machines were for testing initial installations of Availability Manager kits.  I had arranged for 
some disk space from the main OpenVMS cluster for the virtual machine backups.  I copied the virtual 
machine container files to the OpenVMS cluster to establish a base copy of the virtual machines 
before installing Availability Manager.  With this backup, I could install on these systems and then 
simply copy the container files from the OpenVMS cluster to restore the systems to their initial state.  
Much faster than using tapes, etc. on physical systems! 

Configuration and implementation details are in the section “Configuration and Implementation” at 
the end of this article. 

Putting SimH to Work 

Development and testing of each version of Availability Manager requires a fair number of test 
installations.  A great bonus of the virtual VAX setup was the ease in which a virtual machine could be 
restored to a known state after a test.  By copying the disk container files from the OpenVMS cluster 
to the PC, I didn’t have to fiddle with standalone backups, tapes, etc.  I was able to do a thorough 
job of testing than before.  Part of this expanded testing involved changing the amount of memory 
each virtual machine had, the numbers of disk drives available, etc.  This type of testing had been 
limited in the past by physical hardware availability. 

Another virtualization benefit was that I could do more radical testing since I didn’t have to be as 
careful with the virtual machines as I did with the original VAX hardware.  Unlike physical hardware, 
recovery from a bad software install or test could be achieved by simply restoring copies of the base 
system disk container files from the main OpenVMS cluster. 



© Copyright 2010 Hewlett-Packard Development Company, L.P  6 

While performance of each virtual VAX was a bit slow due to the limitations of the host system, it was 
acceptable.  Idle mode detection was available in the version of SimH I deployed which helped 
alleviate performance issues. 

As it turns out, my premonition about the physical VAX hardware came to pass.  In the winter of 
2008, there were a number of power interruptions and outages that did in the VAX hardware.  It was 
sad to see the old hardware go, but fortunately, the applications they supported lived on in their new 
virtual home. 

Conclusion 

The time taken to evaluation and implement the SimH VAX emulators proved to be a good investment.  
System reliability, test efficiency, test flexibility, and overall productivity improved after installing the 
SimH VAX systems.  This in turn allowed me to do additional development and testing.  Availability 
Manager is a better product as a result. 

Configuration and Implementation 

This section covers the configuration and implementation details of the Availability Manager SimH test 
environment I created. 

Configuration for SimH is not complex.  The main areas of focus are disk volumes, network adapters 
and the console for the virtual machine. 

A SimH virtual machine consists of the disk volume container files, a file to contain the non-volatile 
RAM and an editable text file with the configuration details.  I created the following directory structure 
to contain the files for all the virtual machines. 

Directories Amds5 through Amds8 were 
named after the OpenVMS VAX systems being 
emulated.  These directories housed the 
configuration and virtual disk files unique to 
each emulated VAX system.  The configuration 
file for each system specified the non-volatile 
RAM and disk container files with relative 
path names from the base directory.  This 
made moving the virtual machines from one 
place to another easier. 

Specifying a configuration file for SimH VAX 
is fairly simple – simply specify the path and file name as the first parameter.  Running SimH on 
Windows, I created a shortcut and set the Target field to the following: 

"Z:\Virtual OpenVMS machines\VAX\vax.exe" amds8\simh_amds8_config.txt 

Figure 1: SimH shortcut. 

I also set the Start in field to “Z:\Virtual OpenVMS machines\VAX”, the base directory, for the 
relative path references in the configuration file. 

This is the configuration file for one of the virtual machines – AMDS8.  The configuration defines two 
disk volumes and one network adapter.  It also has a number of commented-out commands as a 
reminder of how to configure various items.  Note that this configuration file was used with SimH 
V3.7-0. 

(Base directory) 
Z:\Virtual OpenVMS machines\VAX 

Amds5 Amds6 Amds7 Amds8 



© Copyright 2010 Hewlett-Packard Development Company, L.P  7 

; Load CPU microcode 
; 

load -r ka655x.bin 

; 

; Attach non-volatile RAM to a file (default boot device settings, 

etc.) 

; 

attach NVR amds8\ka655.nvr 

; 

; Set the memory to 128MB 

; 

set cpu 128m 
; 

; Set the CPU to allow the emulator to idle when OpenVMS is idle. 

; 

set cpu idle 

d idle_ipl 8 

d idle_wait 1000 

; 

; Set the halt to return to the ROM console 

; 

set cpu conhalt 

; 

; Set the localhost TELNET port for the console 

; 
set TELNET 5308 

; 

; Enable and disable various devices 

; 

set RL disable 

set LPT disable 

set TQ disable 

set TS disable 

set rq0 ra92 

attach rq0 amds8\amds8_sys.dsk 

set rq1 ra92 

attach rq1 amds8\amds8_user.dsk 
set rq2 disable 

set rq3 disable 

; 

; Set MAC address and adapter 

; 

set xq mac=00-08-C8-08-CE-DE 

attach xq eth4 

;b cpu 

Figure 2: Sample SimH VAX Configuration File. 

I put a number of comments in this file as well as various commands that are commented out.  I left 
these in as a reminder of what possible.  Here are some highlighted sections: 

; Set the memory to 128MB 
; 

set cpu 128m 

Figure 3: Setting emulator memory parameter. 



© Copyright 2010 Hewlett-Packard Development Company, L.P  8 

This command sets the physical memory for the virtual machine.  For the MicroVAX 3900 emulator, 
this has been extended so that it can emulate up to 512MB from the usual maximum of 64MB. 

; Set the localhost TELNET port for the console 
; 

set TELNET 5308 

Figure 4: Setting the console port. 

This command defines the console input/output to port 5308.  Note that the equivalent command for 
SimH 3.8-1 is “set CONSOLE TELNET=5308”.  Since I was running a number of the emulators at the 
same time, I had a system of starting the port numbers at 5300 and then appending the node ID 
number (8 for Amds8, etc.). 

Using the telnet port, the virtual machine console can be connected to the terminal emulator of your 
choice.  I decided to use the freeware PuTTY emulator1 since I was familiar with it and satisfied with 
its VT emulation. 

I created a PuTTY session – AMDS8 Console – that specified the Telnet port.  Then, I created a 
shortcut for the Amds8 console that started PuTTY and specified the PuTTY session.  The Target field of 
the shortcut is as follows: 

"R:\Program Files\PuTTY\putty.exe" -load "AMDS8 console" 

Figure 5: PuTTY shortcut. 

To start Amds8, I would first double-click on the Amds8 SimH shortcut to start the emulator.  The 
emulator would start to execute in a Windows console window and then prompt for input with a 
sim> prompt.  At this point I would double-click on the Amds8 console shortcut and PuTTY would 
connect to the emulator console.  I would then enter the B CPU command at the sim> prompt to start 
the virtual machine.  The console displayed the normal output for a MicroVAX 3900, and I interacted 
with this console as if it were the real thing! 

set rq0 ra92 
attach rq0 amds8\amds8_sys.dsk 

set rq1 ra92 

attach rq1 amds8\amds8_user.dsk 

set rq2 disable 

set rq3 disable 

Figure 6: Virtual disk setup. 

These are the commands used to set up the two virtual disk drives for the virtual VAX.  By default, 
there are four RQ devices per controller.  I needed only two RQ devices so, I explicitly disabled the 
other two.  If these devices aren’t explicitly disabled, they show up under OpenVMS as two online 
disk drives.  However, when you try to mount them, OPCOM complains that the medium is offline and 
that you must mount a device for the drive – confusion that is easily avoided by taking advantage of 
the disable feature. 

If a virtual disk needs to be moved from another machine to this one, all that is needed is to set RQ2 
or RQ3 to specify the location of the container file, and the disk is available to the virtual machine! 

There are a number of other disk controllers that can be enabled, allowing a virtual machine to 
emulate a fairly large number of disk drives.  In SimH version 3.8-1, the VAX 11/780 emulator can 
emulate up to eight RP04/05/06/07 or RM02/03/05/08 disks, four RL11/RL01/02 disks, and 16 
UDA50 MSCP disks on four controllers, as well as TS11, TUK50, and TM03 tape drives and two 
DEUNA/DELUA Ethernet controllers.  The MicroVAX 3900 can emulate up to 512MB of memory and 
has a similar number of disk, tape, and Ethernet controllers as the VAX 780 emulator. 

                                                
1 PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/. 

http://www.chiark.greenend.org.uk/~sgtatham/putty/


© Copyright 2010 Hewlett-Packard Development Company, L.P  9 

set xq mac=00-08-C8-08-CE-DE 

attach xq eth4 

Figure 7: Setting up a network adapter. 

These are the commands used to set up the network adapter.  I set the MAC address to what I found 
was a unique address in the network segment.  Setting the MAC address is an option; it is not 
required.  Since I was hosting four SimH VAX emulators on one physical system, I wanted to ensure 
each emulated VAX had a unique MAC.  Note that eth4 is the mnemonic for the fourth adapter on the 
host machine (Amds5 took the first one adapter on my system, Amds6 the second, etc.). 

Eth1 is bound to the first adapter, Eth2 is bound to the second adapter (if it exists), etc.  If you type in 
the “attach” command interactively at the SimH prompt, SimH displays which network adapter is 
bound to Eth1, Eth2, etc.  If a binding doesn’t exist for a particular mnemonic, an error message is 
displayed. 

Once this configuration was done, the virtual machines were ready to run. 

Installing OpenVMS 

Installing OpenVMS onto a newly created virtual machine can be done through a CDROM device on 
the virtual machine.  An example of configuration for the CDROM drive is shown below: 

set rq2 cdrom 

attach –r rq2 VAXVMS073.ISO 

Figure 8: Setting up a CDROM drive. 

Note that the contents of the OpenVMS installation CD have been transferred to an ISO file on the 
host system.  There are a number of Windows applications that can create an ISO file from a CD, 
and many Windows systems have an application that does this already installed.  Once the ISO file 
has been created, then it can be used by the virtual machine for the OpenVMS installation. 



© Copyright 2010 Hewlett-Packard Development Company, L.P  10 

About the Author 

Barry Kierstein has worked with OpenVMS since 1981, and worked for Hewlett-Packard for almost 
fourteen years.  His work at Hewlett-Packard was with the System Management group within the 
OpenVMS organization and is most known for his project leadership work and advocacy of the 
Availability Manager product.  He is also known for various presentations and hands-on workshops at 
the OpenVMS Bootcamp, DECUS, CETS, HP Tech Forum, European Technical Update Days, and 
various webinars dealing with OpenVMS performance, Availability Manager, HP Virtualization 
strategy around HP SIM/VSE, Blades, and virtual machines.  Barry is under exclusive contract to 
Migration Specialties for emulator and Availability Manager services. 
Barry was laid off by HP in 2009 during the transition of OpenVMS support to India.  The SimH VAX 
development and test environment was transferred to the Indian development and support group and 
continues to be utilized. 
This article was sponsored by Migration Specialties.  Information about Migration Specialties 
emulator products and OpenVMS services can be found at www.MigrationSpecialties.com 
 

http://www.migrationspecialties.com/

